# Completeness

1

**Completeness**— Com*plete ness, n. The state of being complete. [1913 Webster] …2

**completeness**— index conclusion (outcome), entirety, fait accompli, finality, quorum, totality, whole Burton s Legal …3

**Completeness**— In general, an object is complete if nothing needs to be added to it. This notion is made more specific in various fields. Contents 1 Logical completeness 2 Mathematical completeness 3 Computing 4 …4

**Completeness**— (Roget s Thesaurus) < N PARAG:Completeness >N GRP: N 1 Sgm: N 1 completeness completeness &c. >Adj. Sgm: N 1 completion completion &c. 729 Sgm: N 1 integration integration Sgm: N 1 allness allness GRP: N 2 Sgm …5

**completeness**— complete ► ADJECTIVE 1) having all the necessary or appropriate parts; entire. 2) having run its full course; finished. 3) to the greatest extent or degree; total. 4) skilled at every aspect of an activity: the complete footballer. 5) (complete… …6

**Completeness (order theory)**— In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). A special use of the term refers to complete partial orders or complete lattices.… …7

**Completeness of the real numbers**— Intuitively, completeness implies that there are not any “gaps” (in Dedekind s terminology) or “missing points” in the real number line. This contrasts with the rational numbers, whose corresponding number line has a “gap” at each irrational… …8

**Completeness (statistics)**— In statistics, completeness is a property of a statistic in relation to a model for a set of observed data. In essence, it is a condition which ensures that the parameters of the probability distribution representing the model can all be… …9

**Completeness axiom**— In mathematics the completeness axiom, also called Dedekind completeness of the real numbers, is a fundamental property of the set R of real numbers. It is the property that distinguishes R from other ordered fields, especially from the set of… …10

**Completeness of atomic initial sequents**— In sequent calculus, the completeness of atomic initial sequents states that initial sequents A ⊢ A (where A is an arbitrary formula) can be derived from only atomic initial sequents p ⊢ p (where p is an atomic formula). This theorem plays a role …